# Derivative of Tanh
The tanh function is defined as
$
\begin{align}
\tanh (x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} = \frac{sinh(x)}{cosh(x)}
\end{align}
$
From quotient rule:
$
\frac{d(f / g)}{d x}=\frac{g f^{\prime}-f g^{\prime}}{g^2}
$
Set $f=\sinh , g=\cosh$ to get
$
\frac{d \tanh }{d x}=\frac{\cosh \cdot \sinh ^{\prime}-\sinh \cdot \cosh ^{\prime}}{\cosh ^2}
$
Now,
$
\begin{aligned}
& \sinh ^{\prime}=\frac{1}{2}\left(e^x+e^{-x}\right)=\cosh \\
& \cosh ^{\prime}=\frac{1}{2}\left(e^x-e^{-x}\right)=\sinh
\end{aligned}
$
Thus,
$
\frac{d \tanh }{d x}=\frac{\cosh ^2-\sinh ^2}{\cosh ^2}=1-\left(\frac{\sinh }{\cosh }\right)^2=1-\tanh ^2
$
---
## References