# Differential Calculus
Differential calculus is the analytic study of how a function changes with respect to its variables. Derivative is a linear operator of functions. This means it follows:
1. Summation distribution
2. Scalar multiplication
In computational context, differentiation on complex functions are performed using [[Automatic Differentiation]].
## L'Hospital's rule
L'Hospital's rule is useful in calculating limit when taking derivative of the original function simplifies calculation.
$
\left[\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\right]
$
## Product rule
$
\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$
## Quotient rule
$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{\frac{d}{d x} f(x) \cdot g(x)-f(x) \frac{d}{d x} g(x)}{(g(x))^2}
$
## Chain rule
The chain rule states that the partial derivative of $E=E(x, y)$ with respect to $x$ can be calculated via another variable $y=y(x)$, as follows:
$
\frac{\partial E}{\partial x}=\frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial x}
$
## [[Matrix Calculus]]
## Gradients
Gradient is a vector of partial derivatives of a function with respect to its parameters.
$
\nabla f(x, y)=\left[\frac{\partial f}{\partial x} , \frac{\partial f}{\partial y} \right]
$
## Some useful results
### Logarithms
$
\frac{\partial f(x)}{\partial x}=f(x) \frac{\partial \log f(x)}{\partial x}
$
$
\frac{d}{d x} \log f(x)=\frac{1}{f(x)} \cdot \frac{d f(x)}{d x}
$
### Exponentials
$
\frac{d}{d x}\left(e^{f(x)}\right)=f^{\prime}(x) e^{(f(x))}
$
$
\frac{d}{d x}\left[a^x\right] = a^x \ln (a)
$
## Integral Calculus
Integration by parts
$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x .
$
---
## References