# LU Factorization
Any matrix $A \in \mathbb{C}^{n \times n}$ has an LU factorization $P A=L U$, where $P$ is a permutation matrix, $L$ is unit lower triangular (lower triangular with 1 s on the diagonal), and $U$ is upper triangular.
For example:
$
\left[\begin{array}{rrrr}
3 & -1 & 1 & 1 \\
-1 & 3 & 1 & -1 \\
-1 & -1 & 3 & 1 \\
1 & 1 & 1 & 3
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-\frac{1}{3} & 1 & 0 & 0 \\
-\frac{1}{3} & -\frac{1}{2} & 1 & 0 \\
\frac{1}{3} & \frac{1}{2} & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
3 & -1 & 1 & 1 \\
0 & \frac{8}{3} & \frac{4}{3} & -\frac{2}{3} \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 3
\end{array}\right]
$
---
## References